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Abstract. New insights about the concept of local accuracies are elaborated in this article. 11 

Recently found evidence supports the mathematical rigor of equations previously published in 12 

this journal as the unique alternative to rigorously estimate local accuracies. A mathematical 13 

algorithm to compute the averaged local accuracies at a point using the full network statistics of 14 

a preselected cluster of surrounding points is introduced. The relationship between eigenvalues 15 

and eigenvectors of error ellipsoids among different local frames is also addressed.  16 

 17 

Introduction 18 

As far as one can determine, the rigorous formulation for the estimation of local accuracies was 19 

introduced twenty years ago. “Local” in this context implies that the final variance-covariance 20 

(v-c) matrix (or its error ellipsoid) is referred to the local horizon geodetic frame while 21 

incorporating statistics (variances and covariances) from nearby points. The intent is clearly to 22 

determine, as much as possible, the influence of observational errors inherent to near-by points to 23 
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the precision and/or accuracy of any other arbitrary survey mark in the network (horizontal, 3D, 24 

Global Navigation Satellite System (GNSS) determined, etc.) to which, in the opinion of the 25 

authors, they are observationally connected. The first published rigorous treatment of the subject 26 

matter was given explicitly, without derivation, in Appendix A by Geomatics Canada (1996, 27 

p.19-20). The same set of equations were reproduced verbatim by Craig and Wahl (2003) 28 

supporting the same general methodology concept for cadastral applications. A few years later, 29 

identical ideas were posted on the Web by Wallace (2009). The same set of rigorous equations 30 

has been used by several authors in practical engineering applications (e.g. Marendić et al. 2011; 31 

Lee and Seo 2012). 32 

    However, in a book published by Burkholder (2008), perhaps unaware of the aforementioned 33 

references, that author introduces a new approximate approach that is not as rigorous as the 34 

original written formulations of local accuracies that were previously available in print. The 35 

inaccuracy and limitation of this approximation has been confirmed in Soler and Smith (2010) by 36 

introducing a novel independent derivation. The controversy was further cleared and settled in a 37 

discussion and closure published in this journal (Burkholder 2012; Soler and Smith 2012). 38 

Unfortunately, a recent publication by the same author still overlooked the general scientific 39 

consensus and a plethora of earlier established facts and again insisted on a similar 40 

approximation (Burkholder 2014). To finally settle this issue, we feel obligated to revisit the 41 

subject matter and close this chapter once and for all by introducing new alternative 42 

mathematical proofs, supported by easy to understand concepts, corroborating to the reader 43 

interested in mathematical veracity that Burkholder’s derivation is merely an approximation for 44 

computing local accuracies. It is now left to the geospatial engineering community to judge the 45 
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substance of the two approaches and decide which method is better reinforced by the 46 

fundamental principles of theoretical rigor and thoroughness.  47 

 48 

Theoretical background 49 

Figure 1 depicts two points denoted 1 and 2 on the surface of a preselected reference ellipsoid. 50 

To clarify our arguments, it is assumed that the two points are located along the same meridian 51 

which is presumed contained on the plane of the paper. This restriction is introduced to 52 

illuminate the comprehension of the concepts although this simplification will not affect the final 53 

interpretation of results. A current (e.g. GNSS-defined) global terrestrial geocentric frame (x, y, 54 

z), is assumed at the origin of the ellipsoid (not shown in Fig. 1). At point 1 two local 55 

(topocentric) frames have been drawn. A local frame (x1, y1, z1) which is parallel to the global 56 

terrestrial geocentric frame is identified at point 1 and would be referred herein as the “local 57 

terrestrial frame” at point 1. Similarly, the so-called local horizon geodetic frame (e1, n1, u1) at 58 

point 1 is also depicted in the figure. By definition (see e.g. Soler 1988), the direction e points 59 

towards the geodetic positive east, n points to the geodetic positive north, and u (up) points to the 60 

geodetic zenith, positive up. Notice that all local frames are right-handed; furthermore, it follows 61 

from the assumptions mentioned above that the e-axis is perpendicular to the plane of the paper, 62 

with positive direction pointing towards the reader, the n-axis is also on the plane of the selected 63 

meridian and is tangent to the ellipsoid at the point and the u-axis is normal to the ellipsoid 64 

forming a right-handed triad. It should be made clear also that the z-axis is on the plane of the 65 

meridian while the y- and z-axes are not.  66 

    The same logic is applied to point 2 where in a similar way two local frames denoted (x2, y2, 67 

z2) and (e2, n2, u2) are pictured. Recall that the axes of the local terrestrial frames, by definition, 68 
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are parallel to the global geocentric frame and thus, to themselves. However, the (ei, ni, ui), i = 1, 69 

2, local geodetic frames have different spatial orientation anywhere on the surface of the 70 

ellipsoid.   71 

    It is well-know (e.g. Soler 1988) that the transformation of frames (or its coordinates) between 72 

the two described local frames at points 1 and 2 follows immediately from: 73 

 
1 1

1 1 1 1 1 1 1 1 1

1 1

1

1

( , , ) ( , , ) :
T

e xR
x y z e n u n R y

R u z

   
   → =   ←
      

     (1) 74 

  
2 2

2 2 2 2 2 2 2 2 2

2 2

2

2

( , , ) ( , , ) :
T

e xR
x y z e n u n R y

R u z

   
   → =   ←
      

     (2) 75 

where the symbol T indicates matrix transpose. The orthogonal matrix that rotates the local 76 

terrestrial frame into the local horizon geodetic frame at any point i can be written explicitly as 77 

(see e.g. Soler 1976): 78 

 
sin cos 0

cos sin sin sin cos ; 1,2
cos cos sin cos sin

i

i

R i
λ λ

λ ϕ λ ϕ ϕ
λ ϕ λ ϕ ϕ

− 
 = − − = 
  

     (3) 79 

With this information, it can be proved that the variance covariance matrix (v-c) of the local 80 

horizon geodetic frame ( , , )i i ie n u determined as a function of the v-c matrix of the local 81 

terrestrial frame 1 1 1( , , )x y z  can be written as (Soler and Smith 2010): 82 

 1 1
1 1 1 1 1 1( , , ) ( , , )

T
e n u x y zR R=Σ Σ         (4) 83 

and similarly at point 2: 84 

 2 2
2 2 2 2 2 2( , , ) ( , , )

T
e n u x y zR R=Σ Σ        (5) 85 



5 
 

    The local accuracies are also referred to in the geodetic-surveying literature as an average of 86 

some set of relative accuracies. However, to avoid any possible confusion, in this article one is 87 

going to restrict the name of relative local accuracies to the ones referred only to the (x, y, z) 88 

frame leaving the nomenclature of “local accuracies” exclusively to the relative accuracies 89 

referred to the local geodetic frames (e, n, u).  90 

    Let us propagate errors to the basic equation defining the concept of relative local accuracies 91 

between two points: 92 

  
1 2

1 2

1 2

e e e
n n n
u u u

∆ = − 
∆ = − 
∆ = − 

          (6) 93 

The equation written above is also the starting point of the whole mathematical development 94 

followed by Burkholder (2012). To facilitate the understanding, and in order to simplify as much 95 

as possible the mathematical derivation, the assumption is made that the full v-c matrix of the 96 

original terrestrial coordinates (the so-called network accuracies), is restricted to two points and, 97 

furthermore, that it is block diagonal (the cross-correlations between points are assumed zero), 98 

therefore, one can write explicitly: 99 

 
1 1 1

2 2 2

( , , )
3 3

( , , )
3 3

*
( , , )

11

22

0 0

0 0

x y z

x y z
x y z

×

×

      = =       

Σ

Σ
Σ

ΣΣ      (7) 100 

The asterisk * indicates that the assumption of zero cross-correlations is enforced implying that 101 

the v-c matrix is block diagonal. In other words, although there are correlations between the 102 

coordinates of each point, nevertheless, the points themselves are not correlated. This situation 103 

appears in practice when one combines in a v-c matrix points that belong to two different 104 

adjustments with no common observations. 105 
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    Applying the propagation of errors law to Eq. (6), immediately follows 106 

 
2 1

* *
1 2 ( , , )1 1 1 2 2 2( , , ) ( , , ) ( , , ) e n ue n u e n u e n u →→ ∆ ∆ ∆= + =∆ ∆ ∆Σ Σ Σ Σ   (8) 107 

 108 

This undoubtedly shows that the variances and covariances at points 1 and 2 are scalar quantities 109 

that could be added. Finally, substituting Eqs. (4) and (5) in Eq. (8) one arrives, under the stated 110 

assumptions, to the rigorous expression to determine the local (relative) accuracies between two 111 

arbitrary points 1 and 2 (recall that cross-correlations were assumed zero):  112 

 21 1 2 2 1
* *

1 2 ( , , )( , , ) 11 22
TT

e n uRigorous e n u R R R R
→→ ∆ ∆ ∆⇒ = + =∆ ∆ ∆Σ Σ Σ Σ  (9) 113 

The above equation can be approximated as follows (Burkholder, 2008). However, as we will 114 

see later, this formulation is just an approximation of Eq. (9): 115 

      1 1 1 1
* *

1 2 2 1( , , ) ( , , )11 22
T TApproximate e n u e n uR R R R

→ →
⇒ = + ≠∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ  (10) 116 

The first immediate conclusion comparing Eqs. (9) and (10) is that while Eq. (9) satisfies the 117 

commutative property, Eq. (10) does not. It is very instinctive to comprehend that the “relative 118 

accuracy” between two points 1 and 2 should be equal to the “relative accuracy” between points 119 

2 and 1 independent of if one is talking about (x, y, z) or (e, n, u) coordinates. Rigorously 120 

speaking, they should be identical. Nevertheless, this condition is not enforced by Burkholder’s 121 

Eq. (10).  122 

 123 

Consequences of using the approximation equation 124 

Although in practice, primarily for short distances, Eqs. (9) and (10) may return the same or 125 

similar values, mathematically and conceptually speaking, Eq. (10) is an approximation. Let us 126 

concentrate further in the differences inherent to Eqs. (9) and (10). The consequences of 127 
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implementing the rigorous or the approximate equations could be described explicitly by the two 128 

procedures outlined below.  129 

    Figure 2 schematically shows hypothetical error ellipsoids referred to the local terrestrial 130 

frames at points 1 and 2. This is the original information available when using modern three-131 

dimensional GNSS techniques. 132 

In the rigorous derivation of local accuracies (Soler and Smith 2010), the following steps are 133 

executed: 134 

1) Transform the v-c matrix referred to the local terrestrial frame at point 1 to the local 135 

horizon geodetic frame at point 1 (Eq. (4)) 136 

2) Transform the v-c matrix referred to the local terrestrial frame at point 2 to the local 137 

horizon geodetic frame at point 2 (Eq. (5)) 138 

or vice versa 139 

3) Add up the v-c matrices obtained in 1) and 2) (see Eq. (9)) 140 

The resultant value is a unique v-c matrix termed the v-c matrix of local accuracies between 141 

points 1 and 2 or between point 2 and 1, both are identical. This definition and the corresponding 142 

final equations are supported by many publications, among them, Geomatics Canada (1996), 143 

Craig and Wahl (2003), Wallace (2009), Soler and Smith (2010; 2012) and Soler et al. (2012).   144 

 The alternative procedure suggested by Burkholder in his book (Burkholder 2008) 145 

although not clearly demonstrated mathematically, in practical terms, performs the following 146 

steps: 147 

      1) Transform the v-c matrix referred to the local terrestrial frame at point 1 to the local 148 

horizon geodetic frame at point 1 (Eq. (4)) 149 
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      2) Transform the v-c matrix referred to the local terrestrial coordinates at point 2 to the local 150 

horizon geodetic frame at point 1  151 

       3) Add up the v-c matrices obtained in 1) and 2) (see Eq. (10)) 152 

However, in this case the resultant relative value of the v-c matrix between two points is not 153 

unique as it should be.  154 

    Notice nevertheless, that this second approach is mathematically, as well as intuitively, an 155 

approximation. Why should the error ellipsoid of the terrestrial coordinates at point 2 be 156 

transformed into the local horizon geodetic frame at point 1, when the actual observations and 157 

reductions were performed at point 2? For example, the local plumb line (or the normal to the 158 

ellipsoid), meridian, etc. at point 2 are generally different to the ones at point 1, furthermore the 159 

local environment of point 2 (e.g. GNSS atmospheric corrections, etc.) has nothing to do with 160 

point 1. It does not make sense to assume that the local observational errors at point 2 could be 161 

transferred to point 1! There exists a unique “combined” local (relative) accuracy value between 162 

any two points, period! And this fact is obtained rigorously by propagating errors to Eq. (6). If 163 

the definition of local accuracies is to be changed, one first should explain the mathematical rigor 164 

of the equations and convince general audience of the intrinsic characteristics of the final product 165 

that one wants to propose. That will require a theoretical derivation that starts with propagating 166 

errors appropriately from Eq. (6) avoiding the risk of mixing up concepts in the process. 167 

 168 

Local accuracies at points in networks 169 

Let us assume a simple spatial network like the one shown in Fig. 3. Considering that every two 170 

points produces a single local accuracy value, the total number of unique local accuracies 171 

between n points grouped by sets of m = 2 points (n>m) is: 172 
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     !
!( )!

n n
m m n m
 

=  − 
          (11) 173 

 174 

In the example of Fig. 3, n = 5 and m = 2. Then, substituting these values in Eq. (11), the total 175 

number of unique two-point local accuracies for the network in Fig. 3 will be equal to 10. 176 

Written them explicitly: 177 

   21 1 2
* *

1 2 2 1( , , ) ( , , )11 22
TT

e n u e n u
R R R R

→ →
= + =

∆ ∆ ∆ ∆ ∆ ∆
Σ Σ Σ Σ    (12)  178 

  31 1 3
* *

1 3 3 1( , , ) ( , , )11 33
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ     (13) 179 

  41 1 4
* *

1 4 4 1( , , ) ( , , )11 44
TT

e n u e n u
R R R R

→ →
= + =

∆ ∆ ∆ ∆ ∆ ∆
Σ Σ Σ Σ     (14) 180 

  551 1
* *

1 5 5 1( , , ) ( , , )5511
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ     (15) 181 

  32 2 3
* *

2 3 3 2( , , ) ( , , )22 33
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ    (16) 182 

  42 2 4
* *

2 4 4 2( , , ) ( , , )22 44
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ    (17) 183 

  552 2
* *

2 5 5 2( , , ) ( , , )5522
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ    (18) 184 

  34 4 3
* *

3 4 4 3( , , ) ( , , )44 33
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ    (19) 185 

  553 3
* *

3 5 5 3( , , ) ( , , )5533
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ    (20) 186 

  554 4
* *

4 5 5 4( , , ) ( , , )5544
TT

e n u e n uR R R R
→ →

= + =∆ ∆ ∆ ∆ ∆ ∆Σ Σ Σ Σ    (21) 187 

Then, the average local accuracy at one point (point 1, for example) in a network could be 188 

defined as the average of all local accuracies connecting points radiating from that point. 189 
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Therefore, in this particular example, the average local accuracy at point 1 can be computed from 190 

the following equation: 191 

1 2 1 3 1 4 1 5
* * * *

*

1 2,3,4,5

( , , ) ( , , ) ( , , ) ( , , )
( , , ) 4

e n u e n u e n u e n u
e n u

→ → → →

→

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆

+ + +
=
Σ Σ Σ Σ

Σ  192 

                                                                                                      (22) 193 

And substituting the values of Eqs. (12), (13), (14) and (15) above, after simplification one gets 194 

 2 5 52 3 3 4 4
1 11 2,3,4,5

* 5522 33 44
( , , ) 411

T T T T
T

e n u
R R R R R R R R

R R
→

+ + +
∆ ∆ ∆ = +

Σ Σ Σ ΣΣ Σ  (23) 195 

which clearly makes a lot of sense. The maximum contribution rests on the accuracy of point 1 196 

while the remaining contributions are averaged out. For this main reason, its averaged local 197 

accuracy error ellipsoid could be assumed that corresponds to the radiating point, in this case 198 

point 1. Consequently, at every point one can assume two error ellipsoids, the original network 199 

ellipsoid and the averaged local accuracy error ellipsoid for that point. The averaged local 200 

terrestrial error ellipsoid (referred to a frame parallel to the global (x, y, z) frame) is not 201 

considered as intuitive as the averaged local accuracy error ellipsoid, because of the difficulty of 202 

visualizing in space the x-, y-, and z-axis, therefore, it is neglected in this discussion. This is 203 

simply because to know the statistics (variances and covariances) referred to a local north and 204 

east in the local horizon plane is more practical and can be easily envisioned. Furthermore, it is 205 

clear from Fig. 3 that the averaged local accuracies for points such as number 5, that has other 206 

points around it, should get a more realistic value of the quality of the survey at this point in that 207 

local area. This is precisely the advantage of providing local accuracies, the observational errors 208 

inherent to a points radiating from an arbitrary point also contribute to the final quality of the 209 

estimation of its accuracy. 210 
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    Recall now that equation (23) assumes that the v-c matrix of the points referred to the global 211 

terrestrial frame was block diagonal. Otherwise, the contribution of the non-diagonal blocks 212 

( 12 13 14 15, , ,Σ Σ Σ Σ ) and their transposes should be accounted for. For example, the rigorous 213 

(complete) average local accuracies at point 1 (see Fig. 3) with only connections to point 2 and 3 214 

takes the form (Soler et al. 2012):  215 

1 2 1 3

1 2,3

1 11 1 2 22 2 1 12 2 2 21 1 1 11 1 3 33 3 1 13 3 3 31 1

2

2

( , , ) ( , , )
( , , )

T T T T T T T T

e n u e n u
e n u

R R R R R R R R R R R R R R R R

→ →

→

+
=

+ − − + + − −
=

∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆

Σ Σ
Σ

Σ Σ Σ Σ Σ Σ Σ Σ
216 

1 11 1 2 22 2 3 33 3 1 12 2 2 21 1 1 13 3 3 31 1
1 [ ]
2

T T T T T T TR R R R R R R R R R R R R R= + Σ + Σ − Σ − Σ − Σ − ΣΣ   217 

                (24) 218 

A further clarification is in order: the U.S. Federal Geographic Data Committee (FGDC) (1998) 219 

specifies that “local accuracy” be provided as a 95% confidence interval. A practical numerical 220 

example of equation (24) applied to three points resulting from a 3D GNSS network computed at 221 

the 95% confident levels was explained in Soler et al. (2012).  222 

 223 

Computation of the average local accuracies in a network using matrix algebra 224 

A simple matrix procedure to compute the average local accuracies from the original “network 225 

accuracy” variance-covariance matrix could be written as follows: 226 

11 12 1

21 22 2
1 1

1 2,3... 1

1 [ ][ ] [ ] [ ]
1

.

( , , )

n

n T T
b

nn

n
Trace

n
sym

e n u → −

Σ Σ Σ  
  Σ Σ Σ  = ℑ ℜ ℜ ℑ
  −
  Σ  

∆ ∆ ∆Σ




 
      (25) 227 

In the above equation the following operator has been introduced: 228 

Traceb = Sum of the diagonal 3x3 blocks of a square matrix formed by 3x3 blocks 229 
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The explicit form of the other matrices in equation (25) are: 230 

  1
3( 1) 3

[ ] [ ] [0] [0] [0]
[ ] [0] [ ] [0] [0]

[ ] [ ] [0] [0] [ ] [0]

[ ] [0] [0] [0] [ ]

n n

I I
I I
I I

I I

− ×

− 
 − 

ℑ = − 
 
 
 − 







     



 ; and  

1

2

3
3 3

[0] [0] [0] [0]
[0] [0] [0]

[ ] [0] [0]

.

n n

n

R
R

R

sym R

×

 
 
 

ℜ =  
 
 
  

 

        (26) 231 

where [ ]I  is the 3x3 unit matrix. Similarly for point 2, 232 

  

11 12 1

21 22 2
2 2

2 1,3... 1

1 [ ][ ] [ ] [ ]
1

.

( , , )

n

n T T
b

nn

n
Trace

n
sym

e n u → −

Σ Σ Σ  
  Σ Σ Σ  = ℑ ℜ ℜ ℑ
  −
  Σ  

∆ ∆ ∆Σ




 
                (27) 233 

where now: 234 

  2
3( 1) 3

[ ] [ ] [0] [0] [0]
[0] [ ] [ ] [0] [0]

[ ] [0] [ ] [0] [ ] [0]

[0] [ ] [0] [0] [ ]

n n

I I
I I
I I

I I

− ×

− 
 − 

ℑ = − 
 
 
 − 







     



                                                                          (28) 235 

In general one can write: 236 

  

1
3( 1) 3

[ ] [ ]
[ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

[ ] [ ]

i i
n n

i column

I I
I I

I I
I I i row

I I

≠
− ×

↓

− 
 − 
 
 ℑ = − 
 − ←
 
 
 − 

 

 

                                         (29) 237 

where the rest of the 3x3 blocks not shown in the above matrix are equal to zero. Another 238 

important clarification should be stressed; the matrix written above assumes that the averaged 239 
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“local accuracies” are computed for all the points using as nearby points the rest of the points 240 

contained in the v-c matrix of the network accuracies. Generally speaking this will not be the 241 

case, primarily because the local accuracies only need to be determined for stations inside a 242 

circle with prescribed radius from the central station where the value of ( , , )e n u∆ ∆ ∆Σ  is sought. In 243 

this case the matrix 1
3( 1) 3
[ ]i i

n n
≠

− ×
ℑ takes the form: 244 

    

, ...
3( 1) 3

[ ] [ ]

[ ]
[ ][ ]
[ ]

[ ] [ ]

i i j k
n n

j column i column k column

I I j row

I
I i row
I

I I k row

→
− ×

↓ ↓ ↓

 
 − ← 
 
 
 
 ℑ = ←
 
 
 
 

− ← 
 
 

 

 





 

 

                              (30) 245 

Using this matrix in Eq. (25) the resulting algorithm will automatically compute the averaged 246 

local accuracy using any arbitrary number of selected points surrounding the “origin point” i. 247 

Another possible alternative is to use only site connected directly by observations.   248 

 249 

Compendium of useful equations 250 

Assume any 3D network (e.g. a 3D GNSS-determined geocentric network) with given v-c matrix 251 

of network accuracies: 252 

 

2

2

2

; ;( , , )

i i i i i i j i j i j

ii iji i i i j i j

i ji

ii ij x x y x z x x x y x z

y y z y y y z
ji jj

z zz

x y z
symsymsym

σ σ σ σ σ σ
σ σ σ σ

σσ

    
    
    = = =    
    
      

Σ Σ

Σ Σ
Σ Σ Σ

 

  

 



 253 
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             (31) 254 

“Relative network accuracies” between two points i and j are defined through the mathematical 255 

model: 256 

 

( )
( )
( )

i j j i

i j j i

i j j i

x x x x x

y y y y y

z z z z z

∆ = − = − −
∆ = − = − − 


∆ = − = − − 

                      (32) 257 

    
[ ] [ ]

[ ] [ ]
[ ] [ ] [ ] [ ][ ] [ ]( , , ) ( , , )

( , , )

ii ij

ji jji j ij

j i
ii jj ij ji

I I
I I I II Ix y z x y z

x y z

→

→

Σ Σ     
= − = −     − Σ Σ −     

= =

∆ ∆ ∆

∆ ∆ ∆Σ +Σ −Σ −Σ

Σ Σ

Σ

 
                (33) 258 

And the explicit form of the above equation can be written: 259 

2 2

2 2

2 2
( , , )

( , , )

.

2
2

2

i i j j i i i j j i j j i i i j j i j j

j i i i j j i j j

i i j j

i j

j i

x x x x x y x y x y x y x z x z x z x z

y y y y y z y z y z y zi i j

z z z z

x y z

x y z

sym

σ σ σ σ

σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ

σ σ σ
→

→

∆ ∆ ∆

∆ ∆ ∆

+ − + − − +

+ − − +

+

 
 
 =
 
  

=

− −

−

−

Σ

Σ

 260 

                          (34) 261 

The original v-c matrix of network accuracies could be referred to the local horizon frames at 262 

each point as was introduced in Soler and Smith (2010): 263 

  

( , , ) ( , , )

( , , ) ( , , )
( , , )

..

T T
i i i jii ij

T T
j i j jji jj

e n u e n u ii ij

e n u e n u ji jj

R R

R Re n u

R R

R R
symsym

   
   
   = =   
   
     

Σ Σ Σ Σ

Σ Σ Σ Σ
Σ

   

     
   



                    (35) 264 

The general form of the rotation matrix Ri is given by Eq. (3). This equation is one of the most 265 

important developments in the theory of local accuracies introduced by Soler and Smith (2010). 266 

As we will see below, this matrix equation is critical for the development of the rigorous form of 267 
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other types of relative accuracies. Then, the (relative) local accuracies, by definition, are derived 268 

propagating errors from the mathematical model: 269 

    

( )
( )
( )

i j j i

i j j i

i j j i

e e e e e

n n n n n

u u u u u

∆ = − = − −
∆ = − = − − 


∆ = − = − − 

                       (36) 270 

Written in compact matrix algebra the equation that should be used to compute local accuracies 271 

between two points i and j is: 272 

( , , ) ( , , )

( , , ) ( , , )( , , )
[ ] [ ]

[ ] [ ] [ ] [ ][ ] [ ]
ii ij

ji jj

T T
e n u e n u i ii i i ij j

T T
e n u e n u j ji i j jj ji je n u

R R R RI I
I I I II IR R R R→

                               
∆ ∆ ∆

Σ Σ Σ Σ
= − = −Σ Σ − −Σ Σ

Σ  273 

( , , ) ( , , ) ( , , ) ( , , ) ( , , )ii jj ij jie n u e n u e n u e n u
j i

T T T T
i i i j j j i ij j j ji i e n uR R R R R R R R

→
= Σ + Σ − Σ − Σ = ∆ ∆ ∆Σ + Σ − Σ − Σ =Σ274 

                                     (37) 275 

Finally, using the equality in Eq. (35), the explicit form of Eq. (37) takes the form: 276 

  

2 2

2 2

2 2

( , , )

( , , )

.

2
2

2

i i j j i i i j j i j j i i i j j i j j

j i i i j j i j j

i i j j

e e e e e n e n e n e n e u e u e u e u

n n n n n u n u n u n ui i j

u u u u

e n u

e n u i j

j i

sym

σ σ σ σ

σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ

σ σ σ

∆ ∆ ∆

∆ ∆ ∆ →

→

+ − + − − +

+ − − +

+

 
 
 
 
  

=

− −

−

−

=Σ

Σ

 277 

                                       (38) 278 

Notice the remarkable similarities between the notations of Eqs. (34) and (38). It simply amounts 279 

to a change in the subscripts. This equation, as mentioned above, was originally published by 280 

Geomatics Canada (1996). The derivation of local accuracies using the explicit form of Eq. (38) 281 

is an accepted practice supported by international investigators who appropriately cite the 282 

Geomatics Canada report (e.g. Marendić et al. 2011, Eq. (2); Lee and Seo 2012, Eq. (21)).  283 
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    Although some authors represent the local accuracies error ellipses (or ellipsoids) at the center 284 

of the line connecting two arbitrary points i and j, this practice is not recommended. In the first 285 

place because it could be confused with the error ellipse (ellipsoid) computed at the middle point 286 

of the line connecting two arbitrary points. As the reader will see below, the local accuracies 287 

error ellipsoid and the middle point of the line error ellipsoid are not the same. 288 

 289 

Variance-covariance matrix at the average (middle) point of a spatial segment when the 290 

stochastic information at the end points is available  291 

The mathematical model is: 292 

 

2

2

2

i j
m

i j
m

i j
m

x x
x

y y
y

z z
z

+ 
= 


+ = 


+ 

= 


                        (39) 293 

As usual, the network full v-c matrix is given by: 294 

 ( , , )

ii ij

ji jjx y z

sym

 
 
 =  
 
  

Σ Σ

Σ Σ
Σ

 

  

 



                                (40) 295 

Then, propagating errors: 296 

 ( , , ) ( , , )
T

m m m ijij
J Jx y z x y z=Σ Σ                      (41) 297 

where 298 

 [ ]
1 0 0 1 0 0

( , , ) 1 10 1 0 0 1 0 [ ] [ ]
( , , , , , ) 2 2

0 0 1 0 0 1i i i j j j

m m mx y zJ I I
x y z x y z

 
∂  = = = ∂

  

                   (42) 299 
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and substituting (42) into (41), finally: 300 

 1 [ ]
4( , , )m m m

ii jj ij ji
ijx y z = + + +Σ Σ Σ ΣΣ                       (43) 301 

This is an interesting result. The v-c matrix at the middle point of a spatial line between points i 302 

and j is equal to one fourth of the sum of the four matrices (two v-c diagonal block matrices and 303 

two non-diagonal cross-covariance matrices) related to the points.  304 

    If one compares Eq. (43) with Eq. (33) immediately follows: 305 

 4 2[ ]( , , ) ( , , )m m m
ij ji

i j ijx y z x y z→
= − +∆ ∆ ∆ Σ ΣΣ Σ                     (44) 306 

Using Eq. (31) the explicit form of Eq. (43) easily follows: 307 

 308 
2 2

2 2

2 2

1
4

.
( , , )

2

2

2

i i j j i i i j j i j j

j

i i j j

x x x x x y x y x y x y i i i j j i j j

y y y yi i j i i i j j i j j

z z z z

ij

x z x z x z x z

y z y z y z y zm m m
sym

x y z

σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ

 + + +
 
 = + 
 

+  

+ + + + +

+ + + +

+

Σ        309 

                                                                                                                                                     (45) 310 

To get the value of Eq. (43) referred to the local horizon plane (e, n, u), in other words 311 

( , , )ijm m me n uΣ , following the logic developed from our first paper about local accuracies and 312 

recalled herein, Eq. (43) takes the form: 313 

1 [ ]
4( , , )

T T T T
i i j j i j j i

m m m
ii jj ij ji

ij
R R R R R R R Re n u = + + +Σ Σ Σ ΣΣ                     (46) 314 

and after replacing the values from Eq. (35) immediately follows:  315 

2 2

2 2

2 2

1
4

.
( , , )

2

2

2

i i j j i i i j j i j j

j

i i j j

e e e e e n e n e n e n i i i j j i j j

n n n ni i j i i i j j i j j

u u u u

ij

e u e u e u e u

n u n u n u n um m m
sym

e n u

σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ

 + + +
 
 = + 
 

+  

+ + + + +

+ + + +

+

Σ    (47) 316 
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This corroborates, as before, that the symbolic notation equivalence between Eqs. (45) and (47) 317 

is retained. The derivation of Eq. (47) would have been very difficult to compute directly from 318 

the initial math model defined by Eq. (39) after it has been expressed in the (e, n, u) frame 319 

without the introduction of Eq. (35). This validates, once more, that our equations to determine 320 

accurate local accuracies are generally rigorous and correct.   321 

    Similarly to Eq. (44) it can be written: 322 

4 2[ ]( , , ) ( , , )
T T

i j j i
m m m

ij ji
i j ij

R R R Re n u e n u→
= − +∆ ∆ ∆ Σ ΣΣ Σ                                                    (48) 323 

 324 

On error ellipsoids 325 

As Fig. 3 shows there is a unique error ellipsoid at each point that can be determined from the 326 

original network v-c matrix ( , , )i i ix y zΣ  for any arbitrary point i. For simplicity, only error 327 

ellipsoids at points 1, 2, and 3 have been drawn in the figure. Let’s assume that the network v-c 328 

matrix of points 1 and 2 is: 329 

( , , ) 1 1 1 2 2 2( , , , , , )

 3.003     3.508   -0.743 1.222    0.961    0.606
 3.508   34.460  -17.864 0.962    9.045   -4.527
-0.743  -17.864   16.151 0.593   -4.537    7.046

1.222   x y z x y z x y z

   
   
   
      = =Σ Σ

 0.962    0.593  4.755    6.882    -2.792
0.961    9.045   -4.537  6.882   57.717  -31.039
0.606   -4.527    7.046 -2.792  -31.039   25.470

 
 
 
 
 
    
    
    
        

 (cm2) (49) 330 

Point 1 has the following geodetic curvilinear coordinates: 1λ = 262o 53’ 22.1562”, 1ϕ = 31o 34’ 331 

39.7778”, h1= 101.712 m referred to the ITRF2000 frame and GRS80 ellipsoid. Then, if one 332 

computes the eigenvalues and eigenvectors of the first 3x3 diagonal block in Eq. (49) one obtains 333 

the following diagonal matrix of eigenvalues: 334 
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( )

( )

1 1 1

1 1 1

1

2, ,

3 , ,

0 0 45.647 0 0
0 0 0 5.710 0
0 0 0 0 2.258

x y z

x y z

λ
Λ λ

λ

   
   = =   
      

 (cm2)     (50) 335 

with diagonal elements 1 2 3λ λ λ> >  and the matrix of column eigenvectors: 336 

( ) [ ]( )1 1 1 1 1 1
1 2 3, , , ,

-0.0791 0.3706 0.9254
-0.8518 0.4571 - 0.2559
0.5179 0.8085 - 0.2795

x y z x y z

       
S s s s       

      

 
 = =  
  

1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

s s s

s s s

s s s

 
 

=  
 
  

(cm) (51) 337 

The square roots of the diagonal elements of Eq. (50) are the values of the three “principal axes” 338 

of the error ellipsoid with semi-axes 
1a λ= = 6.830cm; 

2b λ= = 2.389cm; 339 

3c λ= = 1.503cm. Notice that the semi-axes of the error ellipsoid are not equal to the standard 340 

deviations at the point (square roots of the diagonal elements in the v-c of Eq. (49)), namely, 341 

1xσ =  1.733cm; 
1yσ =  5.870cm; and 

1zσ = 4.019cm.  342 

The angles defining the orientations of the three principal axes in the x-y-z frame are: 343 

2 2
tan ; tan 1,2,3k k

y z

x x y

k k

k k k

s s
k principal axes

s s s
λ ϕ= = =

+
 344 

1λ = 84.6959o; 1ϕ = 31.1898o; 2λ =50.9696o; 2ϕ = 53.9499o; 3λ = 344.5452o; 3ϕ =16.2314o. 345 

Now, as mentioned above, the v-c matrix of point 1 referred to the (e1, n1, u1) local horizon frame 346 

can be computed as follows: 347 

1 1 1 1 1

1 1 1 1 1 1 1 1 1

1

2

2
( ) 1 ( ) 1

2

2.624    1.013    1.167
1.013    5.377   -0.291
1.167   -0.291   45.613.

e e n e u

T
e n u n n u x y z

u

R R

sym

σ σ σ

σ σ

σ

      Σ = = Σ =         

 (cm2)  (52) 348 

Similarly, computing the eigenvalues of the above symmetric matrix, one arrives at: 349 
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( )

( )

1 1 1

1 1 1

1

2, ,

3 , ,

0 0 45.647 0 0
0 0 0 5.710 0
0 0 0 0 2.258

e n u

e n u

λ
Λ λ

λ

   
   = =   
      

 (cm2)              (53) 350 

Therefore, as expected, we get exactly the same eigenvalues implying that the network error 351 

ellipsoid is a unique estimating surface although it could be referred to different local frames. In 352 

other words, the magnitudes of the semi-axes of the error ellipsoid are the same independent of 353 

the frame used. Hence, the differences between the matrices in the first diagonal block in Eq. (49) 354 

and the matrix in Eq. (52) are merely due to the fact that the values in Eq. (49) refer to the local 355 

terrestrial frame (x1, y1, z1) while the elements in the matrix of Eq. (52) refer to the local geodetic 356 

horizon frame (e1, n1, u1). Consequently, the magnitude of the semi-axes of the error ellipsoid 357 

obtained from the two v-c matrices, being scalar quantities, are invariant under rotations and 358 

therefore their size is the same in both local frames, although they are taken along the 359 

corresponding eigenvectors referred to each frame. Obviously, the components of the 360 

eigenvectors look different because they are referred to two different frames. However, only a 361 

rotation is involved.  362 

    Using the notation introduced above, the analytical proof that the eigenvalues referred to the 363 

two frames are the same follows: 364 

( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) 1 ( ) 1 1 ( ) ( ) ( ) 1 1 ( ) ( ) ( ) 1 ( ) ( ) ( )
T T T T T T

e n u x y z x y z x y z x y z x y z x y z x y z e n u e n u e n uR R R S S R R S S R S SΣ = Σ = Λ = Λ = Λ365 
                     (54) 366 

and consequently, 367 

    
1 1 1 1 1 11e n u x y zS R S=  and 

1 1 1 1 1 1e n u x y zΛ = Λ .                     (55) 368 

In other words, the components of each eigenvector defining the orientation of the semi-axes of 369 

the error ellipsoid referred to the local horizon frame (e1, n1, u1) could be obtained from the 370 
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eigenvectors originally computed and referred to the local terrestrial frame (x1, y1, z1) through a 371 

rotation matrix as follow: 372 

    ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 2 1 2 3 1 3, , , , , , , , , , , ,{ } { } ; { } { } ; { } { }e n u x y z e n u x y z e n u x y zs =R s s =R s s =R s                (56) 373 

or, equivalently, using a single matrix multiplication, for point 1, one can write:  374 

( ) ( )1 1 1 1 1 1, , , ,

0.9923 0.1238 0 0.0791 0.3706 0.9254
0.0648 0.5196 0.8519 0.8518 0.4571 0.2559
0.1055 0.8454 0.5237 0.5179 0.8085 0.2795

0.0270 0.3112 0.950
                            

e n u x y zS RS
− −   

   = = − −   
   − − −   

− − −
= ( )

1 2 3

1 2 3

1 2 3

0
0.0065 0.9504 0.3111  
0.9996 0.0022 0.0277

e e e

n n n

u u u

s s s

s s s cm

s s s

  
  − =   
  −    

     (57) 375 

The two angles defining the directions of the orientation in space of the three principal axes in 376 

the e-n-u frame could be computed as follows (α = geodetic azimuth; v = geodetic vertical 377 

angle):  378 

    
2 2

tan ; tan 1,2,3k k
e u

n e n

k k

k k k

s s
v k principal axes

s s s
α = = =

+
                 (58) 379 

0 0
1 1283.6495 ; 88.4098α ν= = − ; 0 0

2 218.1289 ; 0.1242α ν= = ; 0 0
3 3288.1323 ; 1.5853α ν= =   (59)  380 

Comparing now Eqs. (52) and (53) it is very clear that looking into the magnitudes of the semi-381 

axes and the variances (diagonal elements of Eq. (52)) that the principal axes of the error 382 

ellipsoid (axes a, b, and c) are almost aligned with the up, north, and east directions where 383 

a  along the up direction, b along the north direction, and c along the east direction, clearly 384 

showing that the maximum error is along the height (up) component as it is generally the case 385 

when processing GNSS observations. The actual values are 
1uσ =6.754cm ≈a; 

1nσ =2.319cm 386 

≈b; 
1eσ = 1.612cm ≈c. This is corroborated by the direction of the first principal axis that was 387 
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determined to be: 0 0
1 1283.6495 ; 88.4098α ν= = − . Notice that the other two semi-axes are 388 

practically on the plane of the local geodetic horizon (very small 2v  and 3v  angles). 389 

    From Eq. (54) other interesting relationships could be discussed. Taking traces of Eq. (54) one 390 

can write: 391 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) 1 ( ) 1 ( ) ( ) ( )[ ] [ ]T T

e n u x y z e n u e n u e n uTrace Trace R R Trace S SΣ = Σ = Λ    (60) 392 

By incorporating the cyclic permutation rule into the above equation and reordering terms: 393 

 
1 1 1 1 1 1 1 1 1( ) ( ) ( )e n u x y z e n uTrace Trace TraceΛ = Σ = Σ       (61) 394 

Or explicitly: 395 

 2 2 2
1 2 3 1 1 1 1 1 1

2 2 2 2 2 2 2
x y z e n u pa b cλ λ λ σ σ σ σ σ σ σ+ + = + + = =+ + = + +    (62) 396 

where the scalar  2
pσ  receives the name of point variance. The above expression indicates that 397 

pσ , point standard deviation, is the magnitude of a vector (invariant with respect to rotations) 398 

that could be obtained from the components of any of the vectors: ( , ,a b c ), (
1 1 1
, ,x y zσ σ σ ), or 399 

(
1 1 1
, ,e n uσ σ σ ). The orientation of these four vectors is generally not the same but their magnitude 400 

is identical. Therefore, the point variance is unique at any point of a network and thus 401 

independent of local frame selection. 402 

    The above concepts also apply to the discussion of an “averaged local accuracies error 403 

ellipsoid” except that now the orientation of this error ellipsoid  resulting from equations such as 404 

Eq. (27) is always referred to the local frame e-n-u (see Fig. 4). This is one of the great 405 

advantages of using “local accuracies”, the v-c matrix at each point i refers to the more intuitive 406 

local horizon geodetic frame although it was directly computed from the original full network 407 

(absolute) v-c matrix as written mathematically in Eq. (31). Modern GNSS technology permits 408 

the computation of full network v-c matrices including the variances (diagonal elements), 409 
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covariances between coordinates (non-diagonal elements of the diagonal 3 x 3 blocks and cross-410 

covariances between points (non-diagonal 3 x 3 blocks). This is emphasized because “local 411 

accuracy” results are way off the mark when the cross-covariances are assumed zero 412 

( [0]ij if i jΣ = ≠ ) in the computations. This important but often ignored fact was already 413 

numerically shown in Soler et al. (2012). However, restricting ourselves now to the example 414 

selected here shown in Eq. (49), if one implements Eq. (8) the resultant eigenvalues are *
1λ =  415 

122.9090 cm2; *
2λ = 12.7917 cm2; *

3λ = 5.8556 cm2. Therefore, if the rigorous Eqs. (37) or (38) 416 

are used for the calculation, the resulting eigenvalues are 1λ =  97.9413 cm2; 2λ =4.6943 cm2; 417 

and 3λ = 4.2999 cm2, a significant difference. The eigenvalues of a v-c local accuracy matrix 418 

based on a block diagonal network accuracy matrix are larger than the eigenvalues obtained 419 

using the full network v-c matrix. Consequently the availability of the non-diagonal blocks of the 420 

network v-c matrix is essential to obtain rigorous results. Only recently with the incorporation of 421 

GNSS methods and 3D least-squares models has this important achievement been made 422 

routinely available to the engineers and surveyors.  423 

    Figure 4 shows schematically the parameters involved in the final “averaged local accuracies 424 

error ellipsoid” at an arbitrary point i resulting from implementing the general Eq. (25), denoted 425 

symbolically by 
, ...( , , )i j ke n u →∆ ∆ ∆Σ . From this v-c matrix the following parameters are obtained 426 

(see Fig. 4): the averaged standard deviations of the averaged local accuracies along the e, n, and 427 

up-axes ( eσ∆ , nσ∆ , uσ∆ ); the three semi-axes a, b, and c of the error ellipsoid, and the three 428 

orthonormal eigenvectors 1s


, 2s , and 3s  (they are perpendicular to each other and with 429 

modulus equal to one) defining the orientation of the principal axes. 
, ...( , , )i j ke n u →∆ ∆ ∆Σ contains 430 
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all the information including cross-correlations between points (see Fig.2 and 3) to determine the 431 

most accurate result as a function of the primary statistical information of nearby survey marks. 432 

The values of eσ∆ , nσ∆ , and uσ∆  could be converted to the 95% confidence interval suggested 433 

by FGDC (1998, 2008) using the logic described in Soler et al. (2012). Although some scientists 434 

advocate the use of a bi-normal radial error (Leenhouts 1985), in the opinion of the authors it 435 

will be more rigorous and it takes the same effort computationally speaking to report the 436 

corresponding error ellipses, although the values of eσ∆ , nσ∆ , and uσ∆  is all the information 437 

that is practically needed. 438 

   439 

Conclusions 440 

On the basis of the standard definition of “local accuracies” as announced by scientists more than 441 

20 years ago, new insights about their rigorous definition and their differences with an 442 

alternative characterization proposed by Burkholder (2008) are detailed. Attention to the 443 

calculation of the so-called “mean (averaged) local accuracy” at a survey point is emphasized by 444 

presenting a didactic mathematical discussion with theoretical examples.  445 

    According to the authors, “averaged local accuracies” is the best practical way to indicate the 446 

quality of geodetic and/or engineering surveyed points on a particular area. With the advent of 447 

GNSS technology the availability of variance-covariance matrices between coordinates and 448 

cross-covariance matrices between points have improved the rigorous determination of averaged 449 

local accuracies at any arbitrary point i as a function of the accuracies of its selected surrounding 450 

points j, k,... sharing common observations. This possibility was not attainable before GNSS 451 

hardware and 3D methodologies were fully developed. Up until recently, the absence of the 452 

knowledge of cross-covariances between points (the non-diagonal 3x3 blocks in the network 453 
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(absolute) v-c matrix) has impeded the rigorous determination of local accuracies. Furthermore, 454 

as explained in previous sections, the assumption that the non-diagonal blocks are zero 455 

introduces inaccurate positioning estimates to the results. As Fig. 2 and 3 indicates, presently, we 456 

have at our disposal all the information that is need it to compute averaged local accuracies at 457 

any point by considering all existing information about the errors implicit in its surrounding 458 

survey marks. The approach delineated herein is without any doubt the most accurate way to 459 

have a grasp of the overall point-by-point survey quality in local projects where, clearly, the final 460 

accuracy of every point is directly affected by the observational errors of their connected 461 

neighboring stations. Equation (27) presents a simple mathematical algorithm to implement 462 

numerically these concepts using matrix algebra by starting from the original full v-c matrix of 463 

the network accuracies given in the usual form of Eq. (31).  464 

    Subsequently, some ideas related to error ellipsoids and their inherent eigenvalues and 465 

eigenvectors are exploited by explaining the different relationships with respect to different 466 

(topocentric) local frames and how to transform between them using their corresponding rotation 467 

matrices. At this point the different parameters related to the averaged local error ellipsoid are 468 

described (see Fig. 4). In the opinion of the authors this is the type of ellipsoid that should be 469 

provided in order to determine the best set of local accuracies. 470 
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